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Abstract

The goal of this paper is to investigate and develop a fast and robust algorithm for the solution of high-order accurate
discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured grids. Herein we present
the development of a spectral hp-multigrid method, where the coarse ‘‘grid’’ levels are constructed by reducing the order (p)
of approximation of the discretization using hierarchical basis functions (p-multigrid), together with the traditional (h-mul-
tigrid) approach of constructing coarser grids with fewer elements. On each level we employ variants of the element-Jacobi
scheme, where the Jacobian entries associated with each element are treated implicitly (i.e., inverted directly) and all other
entries are treated explicitly. The methodology is developed for the two-dimensional non-linear Euler equations on
unstructured grids, using both non-linear (FAS) and linear (CGC) multigrid schemes. Results are presented for the channel
flow over a bump and a uniform flow over a four element airfoil. Current results demonstrate convergence rates which are
independent of both order of accuracy (p) of the discretization and level of mesh resolution (h).
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

While most currently employed CFD algorithms are asymptotically second-order accurate in time and in
space, the use of higher-order discretizations in both space and time offers a possible avenue for improving the
predictive simulation capability for many applications. This is due to the fact that higher-order methods
exhibit a faster asymptotic convergence rate in the discretization error than lower (second)-order methods.
For example, with a fourth-order accurate spatial discretization, the error is reduced by a factor of 24 = 16
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each time the mesh resolution is doubled, while a second-order accurate method only achieves a 22 = 4 reduc-
tion in error with each doubling of the mesh resolution. Since a doubling of mesh resolution in three dimen-
sions entails an increase of overall work by a factor of 23 = 8, achieving an arbitrarily prescribed error
tolerance with second-order accurate methods in three dimensions can quickly become unfeasible.

Thus, for increasingly high accuracy levels, higher-order methods ultimately become the method of choice.
Therefore, the expectation is that an efficient higher-order discretization may provide an alternate path for
achieving high accuracy in a flow with a wide disparity of length scales at reduced cost, by avoiding the
use of excessive grid resolution.

On the other hand, for levels of accuracy often associated with mean-flow engineering calculations, higher-
order methods have proved to be excessively costly compared to simpler second-order accurate methods.
Clearly, because of the different asymptotic nature of these methods, the cost comparison between methods
is a strong function of the required levels of accuracy. Nevertheless, for many engineering type calculations,
higher-order methods have been found to be non-competitive compared to the simpler second-order accurate
methods.

While the formulation of discretization strategies for higher-order methods such as discontinuous Galerkin
[1–7] and streamwise upwind Petrov–Galerkin [8] methods are now fairly well understood, the development of
techniques for efficiently solving the discrete equations arising from these methods has generally been lagging.
This is partly due to the complex structure of the discrete equations originating from fairly sophisticated
discretization strategies, as well as the current application of higher-order methods to problems where simple
explicit time-stepping schemes are thought to be adequate solution mechanisms, due to the close matching of
spatial and temporal scales, such as acoustic phenomena.

The development of optimal, or near optimal solution strategies for higher-order discretizations, including
steady-state solutions methodologies, and implicit time integration strategies, remains one of the key deter-
mining factors in devising higher-order methods which are not just competitive but superior to lower-order
methods in overall accuracy and efficiency.

Recent work by the second author has examined the use of spectral multigrid methods, where conver-
gence acceleration is achieved through the use of coarse levels constructed by reducing the order (p) of
approximation of the discretization (as opposed to coarsening the mesh) for discontinuous Galerkin dis-
cretizations [9]. The idea of spectral multigrid was originally proposed by Ronquist and Patera [10], and
has been pursued for the Euler and Navier–Stokes equations by Fidkowski et al. [11–13] with encouraging
results. Implicit multi-level solution techniques for high-order discretizations have also been developed by
Lottes and Fisher [14].

In this work, we extend the original spectral multigrid approach described in [9] to the two-dimensional
steady-state Euler equations, and couple the spectral p-multigrid approach with a more traditional agglomer-
ation h-multigrid method for unstructured meshes. The investigation of efficient smoothers to be used at each
level of the multigrid algorithm is also pursued, and comparisons between linear and non-linear solver strat-
egies are made as well. The overall goal is the development of a solution algorithm which delivers convergence
rates which are independent of p (the order of accuracy of the discretization) and independent of h (the degree
of mesh resolution), while minimizing the cost of each iteration.

The key ingredient in the p-multigrid approach is to employ a hierarchical basis set together with a modal
method. This renders the multigrid inter-level operators almost trivial to implement. This approach is rather
different than the nodal method presented in [15], where a non-hierarchical basis (i.e., nodal basis based on
Lagrange polynomials) is employed and the multilevel process requires rather complicated grid transfer oper-
ators. Moreover, in our methodology the coarse-grids are known a priori and the multilevel methodology is
obtained by using known subsets of the original matrix. That is, the coarse grids correspond to a modal expan-
sion in a lower space. This is also different than the algebraic multigrid (AMG) method [16] where a ‘‘matrix-
free’’ operator is employed without prior knowledge of the coarse-grids and the multilevel process is obtained
from an algebraic standpoint.

Note that the ‘‘hp-’’ terminology is commonly used to denote adaptive spatial and polynomial resolutions.
This is referred to as ‘‘h-’’ and ‘‘p-adaptivity’’. Although the current multigrid methodology is not applied
adaptively, it does make use of p-coarsened and h-coarsened levels leading to our terminology of either
‘‘p-multigrid’’, ‘‘h-multigrid’’ or ‘‘hp-multigrid’’ for the combined algorithm.
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2. Governing equations

The conservative form of the compressible Euler equations describing the conservation of mass, momentum
and total energy is given in vectorial form
oUðx; tÞ
ot

þr � FðUÞ ¼ 0 ð1Þ
subject to appropriate boundary and initial conditions within a two-dimensional domain X. Explicitly, the
state vector U of the conservative variables and the Cartesian components of the inviscid flux F = (Fx,Fy)
are:
U ¼

q

qu

qv

Et

0
BBB@

1
CCCA; Fx ¼

qu

qu2 þ p

quv

ðEt þ pÞu

0
BBB@

1
CCCA; Fy ¼

qv

quv

qv2 þ p

ðEt þ pÞv

0
BBB@

1
CCCA; ð2Þ
where q is the fluid density, (u,v) are the fluid velocity Cartesian components, p is the pressure and Et is the
total energy. For an ideal gas, the equation of state relates the pressure to total energy by:
p ¼ ðc� 1Þ Et �
1

2
qðu2 þ v2Þ

� �
; ð3Þ
where c = 1.4 is the ratio of specific heats.
3. Spatial discretization

The computational domain X is partitioned into an ensemble of non-overlapping elements and within each
element the solution is approximated by a truncated polynomial expansion
Uðx; tÞ � Upðx; tÞ ¼
XM
j¼1

ujðtÞ/jðxÞ; ð4Þ
where M is the number of modes defining the truncation level. The semi-discrete formulation (i.e., continuous
in time) employs a local discontinuous Galerkin formulation [2,3,5,6] in spatial variables within each element
Xk. The weak formulation for Eq. (1) is obtained by minimizing the residual with respect to the expansion
function in an integral sense:
Z
Xk

/i
oUpðx; tÞ

ot
þr � FðUpÞ

� �
k

dXk ¼ 0. ð5Þ
After integrating by parts the weak statement of the problem becomes:
Z
Xk

/i
oUp

ot
dXk �

Z
Xk

r/i � FðUpÞ dXk þ
Z
oXk

/iF
�ðUpÞ � n dðoXkÞ ¼ 0. ð6Þ
The local discontinuous Galerkin approach makes use of element-based basis functions, which results in solu-
tion approximations which are local, discontinuous, and doubled valued on each elemental interface. Mono-
tone numerical fluxes are used to resolve the discontinuity, providing the means of communication between
adjacent elements and specification of the boundary conditions. The numerical flux, F*(Up) Æ n, is obtained
as a solution of a local one-dimensional Riemann problem and depends on the internal interface state, U�

p ,
the adjacent element interface state, Uþ

p , and the orientation as defined by the normal vector, n, of the inter-
face. An approximate Riemann solver is used to compute the flux at inter-element boundaries and provides the
means of imposing boundary conditions. Current implementations include the flux difference splitting schemes
of Rusanov [17], Roe [18], HLL [19] and HLLC [20–22].
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The discrete form of the local discontinuous Galerkin formulation is defined by the particular choice of the
set of basis functions, {/i,i = 1, . . .,M}. The basis set is defined on a standard triangle X̂ðn; gÞ spanning be-
tween {0 < n,g < 1}. We seek a set of hierarchical basis functions in order to simplify our subsequent spectral
multigrid implementation. Defining the first order Lagrange polynomials:
L1 ¼ 1� n� g; L2 ¼ n; L3 ¼ g ð7Þ

the hierarchical basis set, {/i}, is fully described by vertex,
/v
1 ¼ L1; /v

2 ¼ L2; /v
3 ¼ L3 ð8Þ
edge,
/e1
n ¼ L1L2wn�2ðL2 � L1Þ;

/e2
n ¼ L2L3wn�2ðL3 � L2Þ;

/e3
n ¼ L3L1wn�2ðL1 � L3Þ;

ð9Þ
and bubble,
/b
n1;n2 ¼ L1L2L3wn1�1ðL2 � L1Þwn2�1ðL1 � L3Þ ð10Þ
shape functions, where 2 6 n 6 pe, n1 + n2 = pb � 1 and n1,n2 P 1. The kernel functions w(z) are given as:
wn�2ðzÞ ¼
�2r
n� 1

P 1;1
n�2ðzÞ; ð11Þ
where P a;b
n represents the Jacobi polynomial of order, n, with weights a and b. In our discretization the edge

order, pe, and the bubble order, pb, are set to pe = pb = p, where p is the discretization order within the ele-
ment. For p P 2 the basis functions within the standard triangle, {/i, i = 4 . . .M}, are normalized Lobatto
(i.e., /nP2 ¼ r

R x
�1 P

0;0
n�1ðzÞ dz) functions [23], which take zero values at the end of their definition interval

(Fig. 1). The normalization factor, r, can be used to condition the mass or convection matrices.
Although the choice of basis functions does not affect the accuracy of the method, this choice is dictated by

the intended application. In our application (Euler equations) which employs spatial derivatives, our choice of
basis functions has a significant advantage over other types of bases described in [7,24,25]. Specifically, the
basis used in our implementation [23] is rotationally invariant within the standard triangle. The basis used
by Karniadakis and Sherwin [7] for triangular elements makes use of collapsed coordinate systems in order
to construct the basis as a tensor-product of Jacobi polynomials and does not preserve the rotational invari-
ance. Although this basis has good orthogonality properties and the tensor-product brings advantages in
terms of number of operations required to compute the integral terms via quadrature rules, the lack of rota-
tional invariance is somewhat inconvenient. It is known that in the case of a full orthogonal basis set, the
transformation operator from the polynomial space to physical space is identity and the mass matrix becomes
diagonal. However, in the steady state case considered here there is no need to employ the mass matrix. Fur-
thermore, our choice of basis is not necessarily optimal but, under adequate scaling, the current basis presents
good conditioning properties up to p = 10 (not shown), which is high enough for aerodynamic applications.
Future work pertaining to time-dependent problems will revisit the issue of optimal choice of basis functions.

Since the basis set is defined in the standard triangle, a coordinate transformation, {x = x(n,g), y = y(n,g)},
is required to compute the derivatives and the integrals in physical space Xk(x,y). For iso-parametric elements,
the basis functions are expressed as functions of n and g, and the coordinate transformation, and its Jacobian
within the standard element, X̂kðn; gÞ, are given by:
xp ¼
XM
j¼1

x̂j/jðn; gÞ; Jkðn; gÞ ¼
oðx; yÞ
oðn; gÞ . ð12Þ
In the simple case of straight-sided elements the mapping is linear and the determinant of the Jacobian, |Jk|,
and metrics, nx = on/ox, ny = on/ oy, gx = og/ox, gy = og/oy, are constant within each element. For the general
case, using Eq. (12), the solution expansion and the weak statement within each element, X̂k, becomes:
Upðn; g; tÞ ¼
XM
j¼1

ûjðtÞ/jðn; gÞ ð13Þ
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Fig. 1. (a) Vertex, (b) edge and (c) bubble (interior) shape functions on standard triangle.
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Z
X̂k

/i
oUp

ot
jJkj dX̂k �

Z
X̂k

r/iJ
�1
k � FðUpÞjJkj dX̂k þ

Z
oX̂k

/iF
�ðUpÞ � njJkj dðoX̂kÞ ¼ 0. ð14Þ
This set of equations is solved in the modal space and the integrals are evaluated by Gaussian quadrature
rules, which requires a projection in physical space of the solution values to the quadrature points used in
the numerical integration. In order to preserve p + 1 accuracy order of the numerical approximation, the
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element integral uses Gaussian quadrature rules [26,27] which are exact for polynomial degree 2p within the
standard triangle, while the boundary integral uses Gauss–Legendre–Lobatto quadrature rules which are ex-
act for polynomial degree 2p + 1 [28] (Fig. 2). For boundary elements with curved edges the quadrature rule is
no longer exact and a higher order rule must be used in order to preserve the accuracy [29]. In addition the
Jacobians must be evaluated at the integration quadrature points, whereas for interior triangles with straight
edges, these are constant and need only be evaluated once for each element thus reducing the storage
requirements.

Complicated geometries require the use of curved boundaries, especially in the case of high order methods
where elements span a bigger portion of boundaries than the case of low order methods. The influence of
curvature on the accuracy order is assessed via a projection-based interpolation [30,31] of a smooth non-poly-
nomial function. The projection-based interpolation offers a very close approximation of the flow field
solution and, therefore, can be used to assess the convergence rates in the presence of curved boundaries.
The function is defined as f ðx; yÞ ¼ 1=2 sinð4pxÞ cosð4pyÞ spanning between {0 < x, y < 1}, as illustrated in
Fig. 3(a). The projection-based interpolation is performed locally (i.e., element-wise) by transferring the func-
tion to the master element. The function is interpolated on the master element and the resulting interpolant is
then transferred back to the physical space. Three cases are considered where the computational domain is
divided in uniform distributed unstructured elements (triangles). In the Case 1, all the elements are
straight-sided (Fig. 3(b)). In the Case 2, all the edges are second order (parabolas) with the maximum deflec-
tion 10% of their support, as depicted in Fig. 3(c). Although in real case grids a much smaller curvature is
used, it is important to use a large value in oder to assess its influence. Finally, in the Case 3, only the bound-
ary (i.e., exterior) elements are curved and all other (interior) elements are straight-sided (Fig. 3(d)). The dis-
cretization error can be assessed by measuring the L2 or L1 norms of the projection error, in a global sense.
The L2 and L1 norms of a quantity ‘‘w’’ are defined as:
Fig. 2.
p = 2,
kwkL2 ¼
Z
X
w2 dX

� �1=2

; kwkL1 ¼ max jwj; ð15Þ
a b

c d

Interior and edge quadrature points on standard triangle for various approximation orders (�, interior; �, edge). (a) p = 1, (b)
(c) p = 3, (d) p = 4.
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Fig. 3. Projection function and mesh configuration: (a) f(x,y) = 1/2sin(4px) cos(4py), (b) Case 1, (c) Case 2, (d) Case 3.
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where X represents the entire computational domain. Fig. 4 shows the L2 norm of the projection error for
various approximation order (p) and mesh sizes (h). Clearly, the (optimum) p + 1 accuracy order is obtained
in the case of straight-sided elements (Case 1) while a sub-optimal (�p) accuracy is observed for curved ele-
ments (Case 2). Also, the departure form the optimal accuracy increases with the curvature. For example, for a
5% deflection an �p + 1/2 accuracy order was obtained (not shown). However, the use of curved-sided
elements for boundaries only (Case 3) has a minor effect on global accuracy (Fig. 5). The accuracy levels
for all cases are summarized in Table 1. Note that the projection error was measured in a global sense and
the local accuracy at the boundaries will still suffer form a sub-optimal accuracy level [32]. Therefore, in order
to maintain the desired p + 1 global accuracy order, in all simulations we make use of curved-sided elements
for (wall) boundary elements only, and straight-sided elements for all other (interior) elements.

4. The implicit steady state solver

Neglecting the temporal derivative term, the system of equations (Eq. (14)) associated with each element
becomes:
RðUpÞ ¼ Sp; ð16Þ
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where R(Up) is the non-linear residual and Sp is the source term. Although in the case of the Euler equations
Sp = 0, the use of a source term will facilitate the introduction of the multigrid algorithm in the next section.
We use variants of the element-Jacobi scheme to solve this system of equations. The Newton iteration asso-
ciated with Eq. (16) yields at each ‘‘n + 1’’ step:
oR

oUp

� �n
DUnþ1

p ¼ Sp � RðUn
pÞ; Unþ1

p ¼ Un
p þ aDUnþ1

p ; ð17Þ



Table 1
The slopes of the L2 norm of the projection error as a function of h/p-refinement for Case 1 (straight-sided elements), Case 2 (curved-sided
elements) and Case 3 (curved-boundaries)

p Case 1 Case 2 Case 3

0 1.09 – –
1 1.86 – –
2 2.92 2.23 1.89
3 3.95 2.91 3.90
4 4.98 3.93 4.94
5 5.98 4.89 5.84
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where a is a parameter used for robustness to keep kaDUnþ1
p =Unþ1

p kL1 6 10%. The element-Jacobi scheme can
be viewed as an approximate Newton scheme where the full Jacobian matrix is replaced by the block diagonal
entries representing the coupling between all modes within each element, [oR/oUp] = [D], thus neglecting the
coupling between neighboring element modes, which arises through the inter-element flux evaluations (Fig. 6).
The [D] blocks represent small dense matrices associated with each grid element. These element matrices are
inverted using Gaussian elimination to produce a lower-upper (LU) factorization of each element matrix. In
the case of the two-dimensional Euler equations (Eq. (1)) with cubic triangular elements (p = 3), the block
diagonal matrix ([D]) contains 40 · 40 entries for each element. The non-linear iteration equation (17)
becomes:
Fig. 6.
edge m
DUnþ1
p ¼ ½Dn��1ðSp � RðUn

pÞÞ. ð18Þ
This solver denoted as the non-linear element Jacobi (NEJ). A second variant of this solver it the quasi non-
linear element Jacobi (qNJ). This variant employs ‘‘k’’ quasi non-linear iterations, where only the residual,
RðUk

pÞ, is updated, and the block diagonal matrices, [Dn], are kept constant from the outer-iteration ‘‘n’’.
Therefore, the (k + 1) th step is:
DUkþ1
p ¼ ½Dn��1ðSp � RðUk

pÞÞ. ð19Þ
This approach is expected to yield same converge rates per cycle as in the NEJ variant, with a much improved
performance in terms of CPU time. A third variant of this solver is denoted as the linearized element Jacobi
[D]

[O]

Discontinuous solution representation illustrating element based modes and inter-element flux evaluations (d, element modes;�,
odes).
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(LEJ) method. In this approach, the full Jacobian matrix is retained, but is decomposed into block diagonal
[D] and off-diagonal [O] components:
oR

oUp

� �n
¼ ½Dn� þ ½On�. ð20Þ
An iterative procedure can now be written by taking the [O] components, which contain terms arising from the
inter-element flux evaluations, to the right-hand-side of Eq. (17). In matrix form the (k + 1)th step of the lin-
earized element Jacobi step is written as:
DUkþ1
p ¼ ½Dn��1

Sp � RðUn
pÞ � ½On�DUk

p

� �
. ð21Þ
Note that the linearized element Jacobi scheme involves a dual iteration strategy, where each nth outer non-
linear iteration entails ‘‘k’’ inner linear iterations. The advantage of this formulation is that the non-linear
residual RðUn

pÞ and the Jacobian entries [Dn] and [On] are held constant during the linear iterations. This
can significantly reduce the required computational time per cycle for expensive non-linear residual construc-
tions. Because this scheme represents an exact linearization of the element-Jacobi scheme (Eq. (18)), both ap-
proaches can be expected to converge at the same rates per cycle (asymptotically) [33]. On the other hand, the
linearized element Jacobi scheme requires extra storage for the [O] Jacobian blocks, which may not be feasible
for large three-dimensional problems.

The convergence of Eq. (21) can be further accelerated by using a Gauss–Seidel strategy where the off-
diagonal matrices are split into lower, [L], and upper, [U], contributions (i.e., [O] = [L] + [U]). This last solver
variant (LGS) becomes:
DUkþ1
p ¼ ½ðDþ LÞn��1

Sp � RðUn
pÞ � ½Un�DUk

p

� �
ð22Þ
which again involves a dual iteration strategy, but follows an ordered sweep across the elements using latest
available neighboring information in the Gauss–Seidel sense. In this work, we employ a frontal sweep along
the elements which begins near the inner boundary and proceeds toward the outer boundary, using the num-
bering assigned to the grid elements from an advancing front mesh generation technique [34].

Note that a non-linear element Gauss–Seidel approach is also possible, based on the element-Jacobi solver,
which does not require the storage of the off-diagonal [O] blocks. This approach is not considered in the cur-
rent work. All the simulation results shown here are performed using the HLLC flux only.

The boundary conditions are imposed via the approximate Riemann solver at every iteration. In the case of
the Newton solver, the boundary conditions are naturally included in the diagonal [D] term as a result of the
full linearization of the governing equations [22], and no additional treatment is required.

5. Single grid results

The accuracy of the spatial discretizations and the efficiency of the solution schemes described above are
evaluated for the Euler equations using a test problem consisting of the compressible channel flow over a
bump. A series of four grids on this configuration have been generated, consisting of N = 505, 1047, 2015
and 4093 triangular elements, respectively, in order to study the grid convergence of the discontinuous Galer-
kin discretizations of various orders. For each case the solution was converged to machine zero residual in the
discretization error studies. Fig. 7 shows the grid configuration and the Mach contour lines for a freestream
Mach number ofM1 = 0.25. The initial condition is set to a solution obtained beforehand with p = 0. The full
domain extends from �2 6 x 6 2 in the stream-wise direction and from 0 6 y 6 2 in the cross-stream direc-
tion, with top and bottom wall boundaries. For this particular case, the grid consists of N = 1047 triangular
elements, and the discretization order is p = 4 (i.e., fifth-order accurate). The discretization error can be as-
sessed by measuring the L2 norm of the entropy error for this isentropic flow. The entropy error is defined
as ds = s � s1, where s1 is the free stream entropy.

Fig. 8 shows the accuracy (i.e., the L2 entropy error norm) of the steady-state solution for 1st, 2nd, 3rd and
4th order accurate discretizations as a function of the number of triangular elements. For two-dimensional
configurations the number of elements, N, is proportional to 1/h2, where h represents an approximation of
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the cell size. The asymptotic slope of these curves indicates that the design accuracy of the various discretiza-
tion schemes is approximately realized in this study. For example, the final slope of the p = 3 curve is 3.8,
which is close to the design accuracy value of 4.

A comparison of the computed accuracy versus CPU time is given in Fig. 9, where the various p-discret-
izations have been converged to machine zero on the various grid configurations using the linearized ele-
ment-Jacobi driven multigrid scheme described in the next section. In general, for a given level of accuracy,
the CPU time decreases when the approximation order is increased, with the benefit increasing for smaller
accuracy tolerances.

Fig. 10 depicts the convergence of the non-linear element Jacobi, quasi non-linear element Jacobi, linearized
element Jacobi, and linearized element Gauss–Seidel schemes on the mesh of N = 2015 elements, for the p = 4
discretization. The convergence is measured in terms of overall number of cycles, linear cycles for the linear
schemes, and non-linear cycles for the element-Jacobi scheme. As expected, the non-linear element-Jacobi,
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quasi non-linear element Jacobi and linearized element-Jacobi schemes converge at similar rates in terms of
numbers of cycles, while the linearized element Gauss–Seidel scheme converges substantially faster. When
compared in terms of CPU time, Fig. 11, the linearized element-Jacobi and element Gauss–Seidel schemes
are seen to be substantially more efficient than the non-linear element Jacobi scheme. The linearized schemes
utilize 10 linear iterations between each non-linear update, and thus result in 10 times fewer non-linear residual
and Jacobian evaluations than the element-Jacobi scheme. The savings are substantial due to the fact that
these non-linear evaluations include the expensive quadrature integration procedures. The quasi non-linear
element Jacobi may prove to be an appropriate compromise for cases where memory limitations are dominant
(i.e., only diagonal blocks, [D], storage required).
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Due to the superior efficiency of the linearized schemes, the remaining results will make exclusive use of
these schemes. Fig. 12 illustrates the convergence of the linearized element-Jacobi solver as measured by
the rate of the residual reduction versus the number of iterations, for approximation orders varying from
p = 1 to p = 4, on the mesh of N = 2015 elements. Clearly, the method yields a convergence rate which is inde-
pendent of the order of accuracy of the discretization for a fixed size grid. However, increasing the number of
elements, N, has an adverse effect on the convergence rate. In Fig. 13, the convergence rate for p = 4 is seen to
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degrade as the number of mesh elements is increased. This h-dependence of the element-Jacobi solver is
addressed through the use of an hp-multigrid scheme.

6. The hp-multigrid approach

Multigrid methods are known as efficient techniques for accelerating convergence to steady state for both
linear and non-linear problems [35,33], and can be applied with a suitable existing relaxation technique. The
rapid convergence property relies on an efficient reduction of the solution error on a nested sequence of coarse
grids.

6.1. General description

The spectral multigrid approach is based on the same concepts as a traditional h-multigrid method, but
makes use of ‘‘coarser’’ levels which are constructed by reducing the order of accuracy of the discretiza-
tion, rather than using physically coarser grids with fewer elements. Thus, all grid levels contain the same
number of elements, which alleviates the need to perform complex interpolation between grid levels and/or
to implement agglomeration-type procedures [33]. Furthermore, the formulation of the interpolation oper-
ators, between fine and coarse grid levels, is greatly simplified when a hierarchical basis set is employed
for the solution approximation. The main advantage is due to the fact that the lower order basis functions
are a subset of the higher order basis (i.e., hierarchical) and the restriction and prolongation operators be-
come simple projection operators into a lower and higher order space, respectively [11]. Therefore, their
formulation is obtained by a simple deletion or augmentation of the basis set. The restriction from fine
to coarse level is obtained by disregarding the higher order modal coefficients and transferring the values
of the low order modal coefficients exactly. Similarly, the prolongation from coarse to fine levels is ob-
tained by setting the high order modes to zero and injecting the values of the low order coefficients
exactly.

Multigrid strategies are based on a recursive application of a two-level solution mechanism, where the
second (coarser) grid is solved exactly, and used to accelerate the solution on the finer grid [35]. Because
the exact solution of the coarse grid problem at each multigrid cycle is most often prohibitively expensive,
the recursive application of multigrid to solve the coarse grid problem offers the preferred approach for
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minimizing the computational cost of the multigrid cycle, thus resulting in a complete sequence of coarser
grids. For spectral (p)-multigrid methods, the recursive application of lower order discretizations ends with
the p = 0 discretization on the same grid as the fine level problem. For relatively fine meshes, the (exact)
solution of this p = 0 problem at each multigrid cycle can become expensive, and may impede the h-inde-
pendence property of the multigrid strategy. The p = 0 problem can either be solved approximately by
employing the same number of smoothing cycles on this level as on the finer p levels, or the p = 0 prob-
lem can be solved more accurately by performing a larger number of smoothing cycles at each visit to this
coarsest level. In either case, the convergence efficiency will be compromised, either due to inadequate
coarse level convergence, or to excessive coarse level solution cost. An alternative is to employ an h-mul-
tigrid procedure to solve the coarse level problem at each multigrid cycle. In this scenario, the p-multigrid
scheme reverts to an agglomeration multigrid scheme once the p = 0 level has been reached, making use of
a complete sequence of physically coarser agglomerated grids, thus the designation hp-multigrid. Agglom-
eration multigrid methods make use of an automatically generated sequence of coarser level meshes,
formed by merging together neighboring fine grid elements, using a graph algorithm. First-order accurate
(p = 0) agglomeration multigrid methods for unstructured meshes are well established and deliver near
optimal convergence rates [36]. This procedure has the potential of resulting in a truly h- and p-indepen-
dent solution strategy for high-order accurate discontinuous Galerkin discretizations. Fig. 14 illustrates the
second agglomerated level used for the channel bump flow problem using the N = 1047 grid as the origi-
nal mesh configuration, where the bold lines indicate the outlines of the agglomerated coarse level cells.
This procedure is performed recursively, producing 4 coarse levels for this mesh. Applying the same pro-
cedure to the other triangular meshes for the channel bump configuration resulted in 3, 4, and 5 levels for
the meshes containing N = 505, 2015 and 4093 elements, respectively.

Based on our experience with the linearized element-Jacobi solver, we also consider two ways of applying
multigrid to the non-linear Euler equations. The first is to apply multigrid directly to the non-linear problem
(Eq. (16)) via the full approximation storage (FAS) scheme. In a two-level p-multigrid method this scheme is
given as:

� Iterate the fine-grid level problem and its residual, rp, using any of the element-Jacobi variants
aforementioned:
RpðUn
pÞ ¼ Sp; rnp ¼ Sp � RpðUn

pÞ. ð23Þ
� Obtain the source term for the coarse (i.e., p � 1) level by restricting both the solution and the residual:
Sp�1 ¼ Ip�1
p rnp; Un

p�1 ¼ ~I
p�1

p Un
p. ð24Þ
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Fig. 14. A typical two level h-multigrid mesh configuration.
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� Solve the coarse grid level problem
Rp�1ðUn
p�1Þ ¼ Sp�1. ð25Þ
� Calculate the coarse grid error, enp�1:
enp�1 ¼ Un
p�1 � ~I

p�1

p Un
p. ð26Þ
� Prolongate the coarse grid error and correct the fine-grid level approximation:
Unþ1
p ¼ Un

p þ Ipp�1e
n
p�1. ð27Þ
In the case of p-multigrid, ~I
p�1

p and Ip�1
p denote the state and residual restriction (i.e., from p to p � 1) oper-

ators, respectively. In the case of a hierarchical basis, Ip�1
p is the identity matrix with zero columns appended.

Moreover, Ip�1
p ¼ ~I

p�1

p for p-multigrid but note that this is not true in the case of h-multigrid. Similarly, the
prolongation (i.e., from p � 1 to p) operator, Ipp�1, is obtained as the transpose of the restriction operator,
Ipp�1 ¼ ðIp�1

p ÞT.

The second way of applying multigrid to the non-linear set of governing equations is to use the coarse grid
correction (CGC) multigrid technique on the linearized problem obtained at each Newton iteration (Eq. (17)).
This methodology, sometimes referred as ‘‘Newton-multigrid’’, is given (using the dual iteration strategy) as
follows:

� Outer non-linear (nth) iteration. Iterate the discrete linear problem using any of the linearized element-
Jacobi variants (LEJ or LGS) aforementioned:
oRp

oUp

� �n
DUnþ1

p ¼ Sp � RpðUn
pÞ. ð28Þ
– Inner linear (kth) iteration. Solve for the fine-grid level correction wk
p ¼ DUk

p with initial guess wk¼0
p ¼ 0:
½Jk
p�wk

p ¼ fkp; ð29Þ
where
½Jk
p� ¼

oRp

oUp

� �n
; fkp ¼ Sp � RpðUn

pÞ. ð30Þ

– Obtain the source term for the coarse level by restricting the linear residual rkp:

fkp�1 ¼ Ip�1
p rkp; rkp ¼ fkp � ½Jp�wk

p. ð31Þ

– Solve the coarse grid correction problem with initial guess Dwk
p�1 ¼ 0:

½Jk
p�1�Dwk

p�1 ¼ fkp�1; ½Jk
p�1� is a subset of ½Jk

p�. ð32Þ

– Prolongate the coarse grid correction and update the fine-grid correction:

DUkþ1
p ¼ DUk

p þ Ipp�1Dw
k
p�1. ð33Þ

� Fine-grid non-linear update:
Unþ1
p ¼ Un

p þ DUkþ1
p . ð34Þ
In this implementation the basis set is hierarchical beginning at p = 1. Therefore, the Jacobian,
½Jk

p�1� ¼ ½oRpðUpÞ=oUp�n, (and its inverse) represents a subset of ½Jk
pP2� and requires no additional operator

for its construction. Once the p = 1 level is reached the state variable, Up, and the residual, Rp(Up), are
restricted to p = 0, via two different operators defined as follows:
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Uh ¼
1

3

X3

i¼1

Ui
p¼1; RhðUhÞ ¼

X3

i¼1

RpðUi
p¼1Þ; ð35Þ
where {i = 1, . . ., 3} is the modal index corresponding to p = 1. Therefore, in the case of h-multigrid (i.e.,
p = 0), the fine grid problem becomes Rh(Uh) = Sh, and both FAS and CGC algorithms are obtained in a sim-
ilar fashion, with the exception of the ½Jk

h� ¼ ½Jk
p¼0� term, in the case of CGC algorithm, which needs to be eval-

uated once at every non-linear nth step for all h-levels as ½Jk
h� ¼ ½oRhðUhÞ=oUh�n, where the restriction of the

state variable and its residual to a coarse level, H, is obtained as:
UH ¼ 1

AH

XNh

k¼1

ðUhAhÞk; RHðUH Þ ¼
XNh

k¼1

ðRhðUhÞÞk; ð36Þ
where Nh is the number of elements used in the agglomeration, Ah is the fine level elemental area, and
AH ¼

PNh
k¼1ðAhÞk is the coarse level area. This two-level multigrid can be easily extended to a multi-level

scheme.
For robustness it is important to augment the resulting multi-level hp-multigrid with a full multigrid (FMG)

technique, in order to provide a good initial guess for the fine level problem. Moreover, the use of FMG is
critically important in the case of the CGC scheme for it is known that the Newton iteration will diverge if
the initial guess is not close enough to the final solution. In our hp-multigrid approach, the solution process
begins at the coarsest grid level (p = 0), using all the h-levels available, and ends at the fine level where all the
p- and h-levels are used to advance to solution to the desired accuracy, as depicted in Fig. 15. Alternatively, the
FMG strategy can be initiated at the coarsest h-level, but no advantage over the latter approach was found, at
least for the inviscid grids/problem considered. This will be further investigated in a future work pertaining
viscous flows.

Results are presented for both, FAS and CGC, multigrid methods in order to asses their performance. Un-
less otherwise stated, all the simulated results are obtained via FMG using 5 V-cycles per level, starting at
p = 0 level with uniform freestream initial conditions.

6.2. Channel flow over a bump

In the context of hp-multigrid methodology, the first case considered is of a compressible channel flow over
a bump, with the flow and geometrical parameters as defined in Section 5.

6.2.1. Non-linear (FAS) hp-multigrid scheme

Fig. 16 illustrates the convergence rate of the residual as a function of the non-linear (FAS) hp-multigrid
cycles for various p-order discretizations for a fixed mesh resolution (N = 2015), using a multigrid V-cycle with
10 linear element Jacobi smoothing passes on each grid level, including the agglomerated levels. While p-
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Fig. 15. Full hp-multigrid (FMG) levels for p = 3 and h = 2 (–, restriction; - -, prolongation; d, smoothing; �, update).
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independent convergence rates are expected, since the Jacobi smoother was shown to be p-independent, con-
vergence actually accelerates slightly with increasing p. Note that although the convergence rate increases, the
cost of the higher p discretizations is substantially higher per cycle, due to the higher number of degrees of
freedom and larger block matrices involved.

In Fig. 17, the convergence rates for a fixed discretization (p = 4) are compared on the various grids for the
bump configuration. In all cases, convergence to machine accuracy is achieved in 50 multigrid cycles or less,
and only a slight h-dependence is observed (i.e., the N = 505 case requires 39 cycles, while the N = 4093 case
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Fig. 17. The full hp-multigrid convergence vs. the number of multigrid (MG) cycles, on various fine grid problem sizes and order p = 4, for
the channel bump problem.
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requires 47 cycles). Note that the largest case N = 4093 involves a total of 10 multigrid levels, 5 levels from
p = 4 to p = 0, and 5 h-agglomerated levels. The average convergence rates values are given in Table 2.

Fig. 18 illustrates the increases in solution efficiency for the p = 4, N = 4093 channel bump flow case using
linearized element Jacobi as a solver without multigrid (LEJ, 1-level), as a smoother within p-multigrid (LEJ,
pMG) and hp-multigrid (LEJ, hpMG), and using a linearized element Gauss–Seidel hp-multigrid approach
(LGS, hpMG). While the p-multigrid approach shows a twofold speed-up, the hp-multigrid results in an order
of magnitude increase in solution efficiency over the single grid approach. Furthermore, the Gauss–Seidel
driven multigrid approach results in an additional efficiency improvement of 40%.

6.2.2. Linear (CGC) hp-multigrid scheme

The linear multigrid approach is based on the use of a Newton scheme to solve the non-linear Euler equa-
tions, as given by Eq. (17). Each cycle of this Newton scheme produces a large coupled linear problem, which
is solved with the linear multigrid approach. Newton�s method provides quadratic convergence of the non-
linear problem, provided a sufficiently accurate linear problem solution is computed at each non-linear cycle.
This is demonstrated in Fig. 19, for the case of the channel bump flow with p = 4 on the mesh of N = 4093
elements. A p = 0 solution is first obtained via an h-multigrid scheme using uniform free stream values as ini-
tial conditions. Then, this solution is used to initiate the full multigrid strategy starting at p = 1 level, with
three non-linear cycles per FMG-level. In the so-called non-optimized linear multigrid (CGC) scheme, the lin-
ear problem is driven to machine zero at each non-linear cycle, as shown in the figure, and quadratic conver-
gence of the non-linear system is obtained, as evidenced by the decreasing jumps in the linear residuals at each
new non-linear cycle. In this case, the non-linear problem is solved to machine accuracy in five Newton
Table 2
Convergence rates on various fine grid sizes and order p = 4, for the channel bump problem

N Average rate

505 0.50
1047 0.52
2015 0.52
4093 0.54
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bump problem.



0 100 200 300 400 500 600 700
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

Number of Linear Iterations

L
o

g
( 

||r
C

G
C

|| L
2 )

non-optimized
optimized

Fig. 19. The linear (CGC) hp-multigrid convergence vs. the number of linear iterations, on a mesh size of N = 4093 elements and order
p = 4, for the channel bump problem. The full multigrid (FMG) has three cycles per level.

C.R. Nastase, D.J. Mavriplis / Journal of Computational Physics 213 (2006) 330–357 349
iterations per FMG level (only three shown). The advantage of this approach is that the computation of the
non-linear residuals and Jacobians, which involve expensive quadrature integration procedures, needs only be
performed five times through the entire solution procedure in this case. On the other hand, the total number of
multigrid cycles in this approach is much larger than in the non-linear FAS multigrid approach, since driving
the linear problem to machine accuracy in the initial Newton steps produces little gain in overall non-linear
convergence. Therefore, this is referred to as the non-optimized CGC scheme. A simple strategy for optimizing
the number of linear multigrid cycles within the Newton solution process is devised by terminating the linear
system solution according to the criterion:
krkcgckL2 6
kRnkL2
2n

; ð37Þ
where rkcgc is the linear (iteration) residual, R
n is the non-linear residual, and k and n denote the current linear

and non-linear iteration index, respectively. The linear iteration residual is obtained from Eq. (21) as
rkcgc ¼ Sp � RðUn
pÞ � ½On�DUk

p � ½Dn�DUk
p ð38Þ
in the case of linearized element-Jacobi, and from Eq. (22) as
rkcgc ¼ Sp � RðUn
pÞ � ½Un�DUk

p � ½ðDþ LÞn�DUk
p ð39Þ
in the case of linearized element Gauss–Seidel. In Fig. 19 a dramatic reduction in the overall number of linear
system cycles is observed when the optimized exit strategy is used, although the linear multigrid convergence
rate is relatively unchanged. Fig. 20 provides a comparison of the CPU-time required by the optimized linear
(CGC) multigrid scheme versus the non-linear (FAS) multigrid scheme, both using the same linearized ele-
ment-Jacobi smoother, for the N = 4093, p = 4 channel bump case. The optimized linear (CGC) multigrid
scheme is seen to reduce the overall CPU time by a factor of 5, due to the infrequent evaluations of the
non-linear residuals, Jacobians and integration quadratures.

6.3. Flow over a four element airfoil

The next flow configuration is a flow over a four element airfoil of Suddhoo and Hall [37] at zero angle of
attack with a freestream Mach number of M1 = 0.25. This constitutes a more complex configuration, which
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justifies the use of unstructured meshes. The full computational domain extends out to a radius of 10 chords
lengths, where a chord length is defined as the span of the four element airfoil ensemble. The results are
presented for the solution obtained via the linearized element Gauss–Seidel method.

Three meshes of differing resolution were constructed to study the h-dependence of the multigrid solution
technique on this configuration. These meshes contain N = 2142, N = 3856, and N = 5916 elements, respec-
tively. The agglomeration procedure was used to construct 4 coarse levels for the N = 2142 mesh, 5 coarse
levels for the N = 3856 mesh, and 6 coarse levels for the N = 5916 mesh. An illustration of the second agglom-
erated level for the N = 3856 mesh is shown in Fig. 21.
Fig. 21. A typical two level h-multigrid mesh configuration.
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Similarly with the previous case, uniform free stream values are used as initial conditions for the full-
multigrid strategy. For robustness, the full hp-multigrid, with five cycles per level (i.e., p = 0 . . .3) is used to
drive the solution to the p = 4 level. Fig. 22 illustrates the computed Mach contours in the region of the
leading edge of the main airfoil for the N = 2142 mesh using the p = 4 discretization.

6.3.1. Non-linear (FAS) hp-multigrid scheme

In Fig. 23, the convergence rate of the non-linear (FAS) hp-multigrid (using 10 Gauss–Seidel smoothing
passes on each grid level of a multigrid V-cycle) scheme is shown for a fixed mesh size of N = 3856, for various
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Fig. 23. The full hp-multigrid convergence vs. the number of multigrid (MG) cycles, on a mesh size of N = 5916 elements and various
orders (p), for the four-element airfoil problem.
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Fig. 24. The full hp-multigrid convergence vs. the number of multigrid (MG) cycles, on various fine grid problem sizes and order p = 4, for
the four-element airfoil problem.

352 C.R. Nastase, D.J. Mavriplis / Journal of Computational Physics 213 (2006) 330–357
p discretizations. As in the previous case, the convergence rate increases slightly with higher order-accurate
discretizations (although the cost of a multigrid cycle increases substantially with p). Fig. 24 shows the con-
vergence rate of the p = 4 discretization on the various grids for the four-element airfoil configuration. For
all cases, the residuals are reduced more than nine orders of magnitude in approximate 50 multigrid cycles,
where the first 20 iteration are actually the FMG. The multigrid rates degrade slightly with increasing mesh
resolution (h-dependence) toward the machine zero residual norm values, since the finest mesh requires 52 cy-
cles to achieve the same residual level as that achieved in 46 cycles with the coarsest mesh. The scheme is very
nearly h-independent, with average convergence rates given in Table 3.

Figs. 25 and 26 examine the effectiveness of the h-agglomeration multigrid strategy for the N = 5916 finest
mesh problem. In Fig. 25, the steady-state solution for p = 4 on this mesh is computed using the p-multigrid
procedure alone, using 10 linear Gauss–Seidel smoothing cycles on all levels, including the p = 0 level (pMG,
10/10). This is compared with a calculation employing 200 smoothing cycles on the p = 0 level at each mul-
tigrid cycle for better convergence (pMG, 10/200), and with the hpmultigrid procedure, employing 10 smooth-
ing cycles on all levels, including the h-agglomerated levels (hpMG, 10/10). The convergence of the original
p-multigrid scheme is seen to degrade with respect to the hp-multigrid scheme, due to inadequate convergence
of the p = 0 problems at each cycle. This is remedied by the scheme using more p = 0 smoothing cycles, which
delivers slightly faster convergence on a multigrid cycle basis than the hp-multigrid scheme. However, as
shown in Fig. 26, the additional p = 0 smoothing passes increase the cost of the multigrid cycle over the more
efficient hp-multigrid scheme, resulting in a loss of efficiency on a CPU-time basis. In this case, the efficiency
gain of the hp-multigrid method is moderate, and the number of coarse level p = 0 smoothing passes in the p-
multigrid scheme has not been optimized. However, for finer meshes, the advantage of the hp-multigrid
Table 3
Convergence rates on various fine grid sizes and order p = 4, for the four-element airfoil problem

N Average rate

2142 0.61
3856 0.62
5916 0.63
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scheme can be expected to increase, as the p-multigrid alone scheme will not scale appropriately with h, since
more and more coarse p = 0 iterations will be required to maintain adequate convergence on the coarsest level.

The p-multigrid can be also performed by skipping levels. Fig. 27 shows the convergence vs. the number of
cycles obtained using all p-levels (i.e., p = 4,3,2,1,0), by skipping one-level (i.e., p = 4,2,,0) and jumping di-
rectly to the coarsest p-level (i.e., p = 4,0) for the four-element airfoil problem on the mesh size of N = 5916
elements. While the number of iterations increases when skipping levels, the work per MG-cycle will decrease
and one might expect an improvement in terms of overall CPU-time. However, Fig. 28 clearly shows that we
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obtained the same CPU-time when skipping one-level. Moreover, jumping directly to p = 0 level is the worst
scenario in terms of both CPU-time and number of MG-cycles.

6.3.2. Linear (CGC) hp-multigrid scheme
The linear (CGC) hp-multigrid scheme is used to drive the Newton scheme for solving the four-element air-

foil flow problem on the N = 5916 mesh using the p = 4 discretization, in Fig. 29. Similarly to the previous
case, a p = 0 solution is first obtained via the h-multigrid scheme using uniform free stream values as initial
conditions. Then, this solution is used to initiate the full multigrid strategy starting at the p = 1 level, with five
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cycles per FMG-level. For the non-optimized linear iteration strategy, where the linear residual (Eq. (39)) is
converged to machine accuracy at each non-linear cycle, quadratic convergence is observed for the non-linear
problem, although the increased complexity of this case requires a total of 10 Newton iterations per FMG
level to reach machine accuracy (only five shown). Appropriate non-linear continuation techniques could
be used to reduce the total number of non-linear cycles, such as p-continuation [11]. The convergence of
the optimized linear (CGC) hp-multigrid scheme, using the linear iteration exit criterion of Eq. (37) together
with the FMG strategy, is also displayed in Fig. 29, showing convergence to machine accuracy of the full non-
linear problem in slightly more than 100 linear multigrid iterations (or 11 Newton updates). Fig. 30 provides a
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on a mesh size of N = 5916 elements and order p = 4, for the four-element airfoil problem.
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comparison of the total CPU time required to converge this problem using the optimized linear (CGC) hp-
multigrid scheme, and the non-linear (FAS) hp-multigrid scheme, demonstrating an efficiency increase of
nearly a factor of 3 for the linear multigrid approach over the non-linear approach. In order to demonstrate
the advantage of the linear multigrid approach, the same comparison is reproduced in Fig. 30 but using a
higher accuracy quadrature integration in the spatial discretization operator for both multigrid schemes. A
total of NQ = 25 quadrature points are used on each triangle, which corresponds to over-integration for this
p = 4 discretization (where previously NQ = 16 quadrature points where used). While the non-linear (FAS)
multigrid solution cost increases by about 25%, the cost of the linear (CGC) multigrid solution is relatively
unchanged, since the non-linear residual and thus quadrature evaluations are only performed 11 times in this
approach (i.e., at the 11 Newton updates). While this level of quadrature accuracy has little effect on the final
solution accuracy, it is instructive to demonstrate the advantages of the linear multigrid approach.

7. Concluding remarks

A high-order discontinuous Galerkin discretization using hierarchical basis functions on triangles has been
developed and implemented using a hp-multigrid approach. Non-linear element-Jacobi, as well as linearized
element-Jacobi and Gauss–Seidel schemes are used as smoothers on each level of the multigrid sequence.
The linearized smoothers require additional storage, but are generally more efficient than their non-linear
counterparts. The hp-multigrid scheme demonstrates both p-independent and h-independent convergence
rates. The coupling of p- and h-multigrid procedures, through the use of agglomerated coarse levels for
unstructured meshes, increases the overall solution efficiency compared to a p-alone multigrid procedure,
and the benefits of the hp-multigrid approach can be expected to increase for finer meshes. The multigrid pro-
cedure can itself be applied as a non-linear solver, or as a linear solver for a Newton scheme applied to the
non-linear problem. The linear multigrid approach demonstrates superior overall efficiency, provided a suit-
able linear iteration termination strategy is employed. The linear approach results in a solution strategy which
is relatively insensitive to the cost of the non-linear residual construction, including the cost of the quadrature
integration procedure used in the spatial discretization. This is significant, since considerable effort has been
spent devising quadrature-free discretization constructions [38] or collocation methods [39] in order to reduce
the cost of the spatial residual operator. On the other-hand, the linear approach is most appropriate for
steady-state or implicit time-integration problems, where relatively few non-linear residual evaluations are
required. Additionally, for memory constrained problems (particularly in three dimensions), the additional
storage of the linear schemes may prove to be impractical. Future work will concentrate on extending these
techniques to the Navier–Stokes equations and into the three-dimensional setting using hybrid element
topologies.
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